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Abstract-The linear stability of an infinite horizontal double diffusive layer stratified vertically by tem- 
perature and solute concentration is analyzed numerically for the case of temperature-dependent viscosity 
and salt diffusivity. The one-dimensional steady basic state associated with the variable properties is 
characterized by zero fluid velocity, a linear temperature profile and a non-linear salinity distribution. The 
horizontal boundaries are shear-free and perfectly conducting. The eigenvalue problem for the linearized 
perturbation equations is resolved numerically by the Galerkin method. The results for the direct mode 
(‘finger regime’) show that, in contrast to the constant properties case, the critical wavenumber increases 
with the solute Rayleigh number (RaJ and the critical thermal Rayleigh number is reduced from its 
corresponding constant properties value. The behavior of the oscillatory mode (‘diffusive regime’) is more 
complex, and two different branches exist for Ra, larger than some fixed value. The least stable branch is 

characterized by a high wavenumber while the second branch by a small wavenumber. 

1. INTRODUCTION 

One of the fundamental problems of double diffusive 
convection is the stability of a statically stable hori- 
zontal fluid layer, stratified by two buoyancy com- 
ponents with different molecular diffusivities (e.g. heat 
and salt), which make opposite contributions to the 
overall vertical density distribution. In such systems, 
motion can arise even when the basic state density 
distribution is gravitationally stable [l]. The early 
theories pertinent to this problem (e.g. ref. [2]) ana- 
lyzed the linear stability of a two-dimensional, infinite 
horizontal fluid layer with two constant vertical gradi- 
ents of the buoyancy components, shear-free and per- 
fectly conducting boundaries, and constant fluid 
properties. These theories have identified two distinct 
‘double diffusive instability’ modes, depending on the 
relative distribution of the two buoyancy components. 

When the faster diffusing component is stably dis- 
tributed, instability emerges as direct steady con- 
vection in the form of long narrow salt fingers. The 
solution of the small perturbation equations yields an 
expression for Rat, the critical thermal Rayleigh num- 
ber, as a function of Ras, the solute Rayleigh number : 

Ra; =%+?$ 
7 (1) 

Here the zero superscript indicates the case of constant 
fluid properties and linear basic state profiles, 
Ra, = guATh3/vkT, Ra, = gbASh’/vk,, g is the accel- 
eration due to gravity, c( and p are the positive 
coefficients of heat and solute expansion, respectively, 
AT and AS are the temperature and concentration 
differences across the layer of depth h, v is the kin- 
ematic viscosity, kT and k, are the coefficients of 

molecular diffusivity of heat and salt, respectively, and 
T = ks/k, is the diffusivity ratio. Another instability 
mode dominates when the faster diffusing buoyancy 
component is unstably distributed. In this case, the 
motion at the onset of instability is oscillatory and the 
minimum Rat is 

Pr+t 
Ra!: = __ 

Pr+l 
Ra,+(l+r) l+; “4”-’ (2) 

( j 

where Pr = v/k, is the Prandtl number. The cor- 
responding frequency of unstable oscillations is given 

by 

Pf =;Pr(;+r+lja’-$(Ra&Ra,). (3) 

In both instability modes, RaT has a minimum critical 
value when the vertical wavenumber n = I and its 
corresponding horizontal wavenumber a = d%, 
and these values have already been taken into account 
in equations (l)-(3). The unit vertical wavemumber 
indicates that the cells extend from top to bottom of 
the unstable fluid layer, and the constant a shows that 
their horizontal scale is proportional to h. 

The development of solar ponds during the 1970s 
increased the interest in double diffusive convection, 
particularly in the presence of non-linear vertical con- 
centration and temperature profiles [3, 41. Likewise. 
in recent years it has been recognized that, besides its 
relevance to oceanographical and technological appli- 
cations, double diffusive convection plays an impor- 
tant role in geological systems like magma chambers. 
and in crystallization processes in multicomponent 
liquids [5, 61. In any realistic double diffusive system 
the temperature or concentration gradient can cause 
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NOMENCLATURE 

u horizontal wavenumber AT temperature difference across the layer 
D determinant [ Cl 
g acceleration due to gravity [cm s !] h Kronecker symbol 
h depth of the layer [cm] r coefficient of viscosity variation 
i imaginary unit, &i 
k coefficient of molecular diffusivity ;i 

ratio, Ra;/Ra” T 
dimensionless temperature. 

[cm’ s -- ‘1 (T- T&AT 

M number of terms in truncated Galerkin L horizontal wavelength, 2n/1/a [cm] 

series \’ kinematic viscosity [cm’ s ‘1 

n vertical wavenumber 2 length scale, ((l,~kTh)l’(aBAs))“li 

P complex exponent [s-l] 0 dimensionless concentration. 

PV Prandtl number, v/kT (S-&)/AS 

R% solute Rayleigh number, diffusivity ratio, ks.,ik-r 

W’A~h’)l(vckd ;, dimensionless stream function. 

Ra, thermal Rayleigh number, 

(g~ATh’)l(v,k,) 
s salt concentration [frac.] Subscripts 

T temperature [‘-Cl b basic state 

s horizontal coordinate (dimensionless i imaginary part 

and/or [cm]) r reference value ; real part 

= vertical coordinate (dimensionless S salt 

and/or [cm]). T heat. 

Greek symbols 
s( coefficient of heat expansion (absolute Superscripts 

value) [(C)‘l 0 constant properties case 

B coefficient of solute expansion C critical value 

(absolute value) [frac./‘] W switching point from the direct mode 

li dimensionless dependence of solute to the oscillatory one. 

diffusivity on temperature, 

(dkld T) * ATlkr 
AS concentration difference across the Other symbols 

layer [frac.] (*, *) scalar product, J;,,f(:)g(:) d:. 

considerable spatial variations of the physical proper- 
ties of the fluid which, in turn, vary the gradient itself. 
For example, in a normal solar pond temperature 
gradient, the kinematic viscosity and salt diffusivity 
are varied by a factor of three from top to bottom [see 
equations (4) and (5) below]. Under such circum- 
stances, the assumption of constant properties and 
linear profiles, and the resulting criteria [e.g. equations 
(I ))(3)] may not be valid any more. The present inves- 
tigation was motivated by the conjecture that this 
assumption can be one of the causes for the dis- 
crepancies between the theoretically predicted values 
of the stability parameters and those observed in real 
systems [4] 

The influence of variable viscosity or variable basic 
state gradient on the stability of a single diffusive layer 
(Benard problem) was studied rather extensively [77 
IO]. However, to the best of our knowledge the double 
diffusive stability analysis with variable fluid proper- 
ties has not been reported in the literature, except for 
the thesis of Berger [ 1 I]. He studied the influence of a 

linearly variable v, or k,. or both of them on the critical 
Ra, using the assumption of constant salinity and 
temperature gradients. The related case of variable 
solute stratification (but constant properties) was 
studied, using asymptotic [3] and numerical [4] 

methods. The latter three authors reported that, in 
the oscillatory mode, the critical thermal Rayleigh 
number is smaller than its value in the constant gradi- 
ents case. Walton [3] and Zangrando and Bertram [4] 
have also shown that. in the oscillatory mode. the 
instability is localized vertically around the point of 
minimum salinity gradient. 

It should be emphasized that, in the latter three 
analyses, the basic state is quasi-steady : Berger [I I] 
considered variable k, (and $1) with a constant salinity 
gradient, while Walton [3] and Zangrando and 
Bertram [4] studied a non-linear salinity profile with 
constant properties. 

The aim of the present work is to analyze the stab- 
ility of a steady-state double diffusive layer. .rim- 
ulraneously exposed to the effects of variable fluid 
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Fig. 1. The basic state non-dimensional profiles of the tem- 
perature (Oh) and concentration (oh) as a function of depth 

(z). 

properties and a non-linear basic state salinity dis- 
tribution. We have taken into account temperature 
dependent viscosity and salt diffusivity, which leads 
to the basic state profiles shown in Fig. 1. The stability 
problem is analyzed numerically using the Galerkin 
method, widely used for convective stability analyses. 

2. FLUID PROPERTIES AND BASIC STATE 

PROFILES 

The ranges of variations of the temperature 
(T = Z(r9O’C) and salt concentration (S = f&O.2 in 
fraction) utilized here are those appropriate for NaCl 
solar pond conditions. Using literature data [12, 131 
it can be shown that, over the above ranges, the vari- 
ation of v with temperature is near to 200% while 
its variation with concentration is about 30%. The 
corresponding variations of k, are about 200% and 
5%. respectively. The variations of kT with tem- 
perature or concentration are both about 15%. Thus, 
in the present analysis we have taken into account 
only the effect of the temperature on v and k,, because 
this effect is the dominant one. 

The fluid properties were approximated as : 

I’ = exp ( - 4.098830 - 0.0269082 T 

+0.991268x 10m4T2) [cm’s_‘] (4) 

k, = 1.35(1 +O.O33(T-20)) x 10m5 [cm’ SV’] 

(5) 

k, = const. = 0.0014 [cm’ SK’]. (6) 

At the basic state we consider a horizontally infinite 
stationary fluid layer, stratified by vertical dis- 
tributions of non-dimensional temperature 0,(z) and 
solute concentration crJz), where z is the vertical coor- 
dinate axis directed downwards and the subscript ‘b’ 
stands for the basic state. The dimensionless steady- 
state conductive solution with zero velocity is deter- 
mined by solving the set of coupled equations of heat 
and salt diffusion, in our case reduced to : 

with boundary conditions of fixed temperature and 
salinity at the upper surface : z = 0, Q,(O) = ~~(0) = 0. 
and at the lower surface: z = 1, f&,(l) = a,(l) = 1. 
The dimensionless variables are defined as H = 
(T-T,)/(T,-T,) and cr = (S-S,)/(S,--S,), where 
the subscripts ‘0’ and ‘1’ correspond to the top and 
bottom of the layer, respectively. The coordinate z is 
normalized by the layer depth h and the coefficient y is 

AT dk, 

l’=k,,‘dT 

where ks,, is a reference value of k, (here at T = 2O‘C). 
The system of equations (7) and (8) is solved ana- 

lytically to obtain : 

0, = 3 (9) 

In (‘Jz+ 1) 

Oh = ln(1;+1) 
(10) 

The steady basic state profiles of the non-dimen- 
sional concentration and temperature are shawn in 
Fig. 1 ; in the present calculation oh = 0.835458 
In (2.31z+ I). 

3. THE SMALL PERTURBATION EQUATIONS 

The linearized small perturbation equations are 
basically similar to those governing the constant 
properties problem, the difference is the inclusion of 
terms associated with the temperature dependent vis- 
cosity and salt diffusivity in the stream function and 
concentration equations, respectively. Under the 
Boussinesq approximation, the density is a linear 
function of temperature and concentration, and only 
the effect of its variation on the body force is taken 
into account. The momentum equation is transformed 
into the stream function equation and each physical 
variable is expressed as a sum of its basic state value 
and a small perturbation. Then the equations are lin- 
earized and non-dimensionalized, to yield : 

(12) 
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In this set of equations ti, B and 0 are the two- 
dimensional time-dependent perturbations of the 
stream function, temperature and concentration, 
respectively, t is the time and x is the horizontal coor- 
dinate. The normalized basic state viscosity vh = r;rr 
is expressed as a function of L, the prime symbol 
denotes the derivative operator d/dz related to func- 
tions of single argument and the subscript ‘r’ denotes 
a reference constant value. The reference values llr and 
ks,l- are chosen at T = 20°C. To obtain equations (1 I)- 
(13) distance was normalized by the layer depth /r, 
time by h’/k,, stream function by k,, and temperature 
and concentration differences by AT = T, - T,, and 
AS = S, -&. It is also noticed that hereafter T, Pr, 
Ras and Ra, are based on v, and ks,,. As usual, positive 
Ra numbers mean that the layer is heated and salted 
from below. 

The above stability problem is studied under ideal 
free-free boundary conditions of zero shear stress and 
zero perturbations at the bottom and top surfaces of 
the fluid layer : 

lfY’(x, 0) = ly’(x, 1) = 0 (14) 

$(X, 0) = $(X, 1) = B(x, 0) = 0(X, 1) 

= a(.& 0) = a@, 1) = 0. (15) 

It should be pointed out that shear-free conditions 
at both top and bottom boundaries are physically 
unrealistic, and these conditions are utilized here to 
allow a relatively simple solution of the problem. The 
following two arguments suggest that using the shear- 
free boundary conditions instead of the realistic ones 
would not affect the results significantly (at large Ras). 
First, in the analytical results for the constant-proper- 
ties and constant-gradient case [see equations (1) and 
(2)], the constant term on the right-hand side becomes 
negligible for large Ra,. This term is associated with 
the boundary conditions, which implies that at large 
Ras the effect of the boundary conditions on the 
stability criteria is small. A similar small effect of the 
boundary conditions can be expected in the present 
case of variable properties and a non-linear con- 
centration profile. Secondly, when the basic state con- 
centration gradient is variable, the flow pattern at the 
instability onset is expected to be vertically localized 
(in particular at large Ras, see Section 5.2), and hence 
less sensitive to the boundary conditions [4]. 

4. THE NUMERICAL PROCEDURE 

To solve our problem we follow the Galerkin 
method [14]. At the first stage separation of variables 
is employed in the form : 

$(t, .x, Z) = ,f; (z) eP’ sin 7ra.Y 

O(2, s, z) = ,fi (2) e” cos 71ax 

a(t, x, z) = f3 (z) epr cos 7ca.x 

where j;, ,fi and f3 are some smooth functions, a is a 
constant and p is in general complex, p = pr+ ip,. 

After substituting these expressions into equations 
(1 I)-( 15), the latter are transformed into a set of ordi- 
nary differential equations with the appropriate 
boundary conditions. 

At the second stage, the functions ,f; (i = 1.2.3) 
are expanded into a truncated series on a complete 
linearly-independent system of functions (sin rrnz~ . 
(n = 1. M), which satisfy the necessary boundary con- 
ditions and are orthogonal on the non-dimensional 
interval ZE [0, I] in the sense of the scalar product 

<.f:a) = ,f’(--k(z) d=. 

If the expansion series are 

b, 
.I;(=) = 1 A,,,sinxn= (j= 1,2,3) 

I, I 

then, using the Galerkin method, the problem is 
reduced to the following set of homogeneous algebraic 
equations with A, ,n and A,,,, as unknowns : 

u’n Ra, _ 
rr’(k’+a’)+p 

-oRa,%= (16) 

+~(n”7(k2+n’)+p)] = 0. (17) 

Here the integer k is running like n from I to M. 
6: is the Kronecker delta and the following deno- 
tations are used : 

1;;” = (v,, sin nn~, sin nkz) 

1’;” = (~1; cos mzz, sin zkz) 

I;” = (~1; sin XX, sin xkz) 

Tt” = (0, sin nn:, sin nkz) 

T’(’ = (8; cos nnz, sin rrkz) 

S’;’ = (a; cos nnz, sin zkz) 

S’$ = (a; sin WE, sin xkz) 

S’;’ = (0: sin mz, sin zkz). 

The stability criterion satisfies the requirement 
D( Ra,, Ra,, a,p) = 0, where D is the determinant of 
the homogeneous system (16), (17). 

The stability limits for any value of Ra, are found 
numerically by searching the minimum of the function 
Ra,(a) on the manifold { Ra,lD(Ra,, a,p) = 0) under 
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Fig. 2. The ratio 7 = Raf/Rat at the onset of direct instability 

as a function of Ra,. 

the condition p = p,f ip, = 0 in the case of direct 
mode or pr = 0 in the oscillatory mode case. This 
minimum corresponds to the critical value of 
Ra, = Ra’, and its associated horizontal wavenumber 
u. In the second case an additional parameter p, rep- 
resents the frequency of marginal oscillations. 

All calculations were carried out on the VAX 
4000/200 computer at the Center for Technological 
Education Holon using the software library IMSL. 

5. RESULTS AND DISCUSSION 

Before analyzing the general double diffusive prob- 
lem with variable fluid properties and a non-linear 
salinity profile, the above numerical procedure was 
validated by analyzing some particular cases, the 
results of which are already known. Our numerical 
procedure reproduced very well the stability limits of 
the particular case of constant properties and gradi- 
ents, equations (l)-(3), obtained theoretically by sev- 
eral authors (e.g. ref. [2]). These results are used below 
as references for the variable properties case. Another 
case utilized to validate our numerical procedure is 
the Benard problem with temperature dependent vis- 
cosity. Our results are in very good agreement (see 
the Appendix) with previous ones obtained using a 
different numerical method. 

The results presented below were obtained with the 
reference values of the variable fluid properties at 
T = 20°C which yield Pr = 7.20, 7 = 0.0096 and 
;‘= 2.31. 

5.1. Direct instability mode 
The resulting stability parameters for the direct 

mode are presented in Figs. 2 and 3 as a function of 
Ru,. The calculated critical thermal Rayleigh number 
RaS was divided by Rat-its value corresponding to 
the constant properties case [in this case equation (l)]. 
The resulting ratio 1 = Ra;/Ra!: is shown in Fig. 2. 
The values of q indicate that, for the variable proper- 
ties case, Raf is smaller than its value corresponding 
to constant properties, and the ratio of the two 
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Fig. 3. The wavenumber a at the onset of direct instability 
as a function of Rus. The dashed line indicates the case of 

constant properties and gradients. 

decreases with Ra,. For example, at Ra, = 10 the 
value of Ra4 is reduced by about 50%, while for 
Ras > 106, the ratio q decreases to 20% and seems to 
approach a constant value, independent of Ras. This 
suggests that the asymptotic behavior is Ra+ cx Ra,, 
as in the case with constant properties and gradients 
[equation (1) without the second term on the right- 
hand side]. The same asymptotic behavior was 
obtained by Zangrando and Bertram [4]. 

The wavenumber at the onset of direct instability is 
plotted in Fig. 3. It is shown that the value of the 
wavenumber a increases with Ra, in contrast to the 
constant properties case where a = const. = fi. 
For Ra, > IO3 the wavenumber is varied as 
a cc Rai.’ ’ (all exponents displayed hereinafter in deci- 
mal form have been estimated from our numerical 
results using the least-squares method). This relation 
is very close to a a Rah16 obtained by Zangrando and 
Bertram [4] for a cubic concentration profile under 
constant properties. The proximity of these results 
suggests that the dominant reason for the variation of 
a is the nonlinearity of the salinity profile. The vari- 
ation of a with Ras suggests that the dimensional 
wavelength depends not only on h (as in the case 
a = const.), but also on the concentration difference 
As and the fluid properties. 

The increase of a, or the decrease of the horizontal 
wavelength, with Ra, can be explained physically as 
follows. In natural convection phenomena, where the 
flow pattern at the onset of instability is cellular (e.g. 
Benard problem), the cells tend to have an aspect ratio 
of about 1. This is because at the instability onset the 
potential energy (i.e. the critical AT) is minimum and 
so is the kinetic energy of the fluid. Only cells of aspect 
ratio close to 1 can persist with this minimum kinetic 
energy, and therefore this is the preferred geometry. 
In our case, the concentration gradient is variable and 
the flow at the onset of convection is expected to 
occupy only an effective depth of the layer where the 
concentration gradient is minimum (this is shown in 
more detail for the oscillatory mode in Section 5.2 
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Fig. 4. The ratio q = R&/Rat at the onset of oscillatory 
instability as a function of Ras. The two different symbols 

indicate the different branches for Ra, > 4000. 

below). As Ra, is increased this effective layer depth 
becomes smaller; the critical cells, however, tend to 
have an aspect ratio of about 1, and therefore their 
horizontal wavelength decreases as well. 

5.2. Oscillatory instability> mode 
The calculations of the oscillatory instability mode 

were performed with exactly the same conditions and 
basic state profiles as those for the direct mode. 
However, the behavior of this mode, as shown in Figs. 
4-6, is somewhat more complex than that in the direct 

Figure 4 shows the calculated values of d for both 

mode case. Essentially, there exists a bifurcation point 

branches. For the oscillatory mode q = Raf/Ra+, 
where Rat is now given due to equation (2). It is 

at Ras N 4000, from which two separate branches 

observed that, on both branches, the values of Ru+ 
are smaller than the ones for constant properties and 

emerge. 

gradients. However, one of these branches has lower 
q values and therefore this branch is the critical one. 

IO- 

1 r_ 

a o.I- 

0.01 - 

10-3 - 

.-O- ._*- -o- 

lOAl ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ J 
I 10 1001000 104 105 106 IO’ I08 109 lO’Ol0” 

Fig. 5. The wavenumber a at the onset of oscillatory insta- 
bility as a function of Ra,. The symbols of the different 
branches correspond to those in Fig. 4. The horizontal line 

indicates the case of constant properties and gradients. 

The bifurcation is also illustrated by the graph of 
the wavenumber u at the onset of oscillatory insta- 
bility. which is shown in Fig. 5. Up to the bifurcation 
point (I 2 0.69, slightly smaller than its value in the 
case of constant properties, but afterwards it bifur- 
cates into an increasing and a decreasing branch. On 
the former the value of N varies like CI x Ru:! 25. while 
on the latter u x Ru;” 50. Basically the most unstable 
branch (the lower one in Fig. 4) corresponds here to 
higher values of N. However, it seems that at the nar- 
row neighborhood of Ra, = IO’. the branch with 
lower CI is the critical one. since it has a slightly smaller 
4. In the analysis of Zangrando and Bertram [4] a 
region where the branch with lower a is the critical 
one was also found, but it was much wider, extending 
from their bifurcation point at Rus 2 10” up to 
Ru, = lo’, after which the branch with higher N 
becomes critical. 

On the critical branch d CT Rag ” and consequently 
the horizontal wavelength 1. = 27rh/u can be expressed 
in dimensional variables as 

(18) 

This relation indicates that 1 does not depend on the 
layer depth h only, but also depends on the con- 
centration difference (AS) and the fluid properties. 
This result is different from the constant properties 

A scale similar to t was recently found in the exper- 

and gradients case where i, x h [2]. Furthermore, since 

imental investigation of Kerpel et cd. [15]. In their 
experiments a stable constant salinity gradient was 
heated uniformly from below ; a bottom mixed layer 

Ra, = (h/Q”. for Ru, > I. c < h so that for a fixed 

is initially formed and on its top secondary layers 

layer depth the horizontal wavelength of the unstable 

successively emerge. Kerpel et al. [ 151 have shown that 
the initial vertical thickness of each secondary layer is 

motion scales down with increasing Ra,. 

proportional to a scale similar to 5 but with k, replac- 
ing kT. The formation of each secondary layer in that 
experiment is due to the instability of a horizontal 
layer stratified by a constant stabilizing salinity gradi- 
ent and an exponential (and time dependent) de- 
stabilizing temperature profile [16]. Although the 
basic state profiles in such experiments are different 
from those analyzed here, the agreement between the 
resulted scales implies that the vertical thickness 
measured by Kerpel rt al. [I 51 is fixed by the hori- 
zontal wavelength of unstable oscillations i (which is 
proportional to 0. Zangrando and Bertram [4] have 
also shown that large horizontal wavenumbers in a 
solar pond with a variable salinity gradient are associ- 
ated with vertical localization of the unstable zone. 
This vertical localization gives rise to the formation 
of isolated thin horizontal layers in the interior of the 
pond. 

It is noteworthy that a scale similar to 5 was found 
in three other double diffusive problems. For the hori- 
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zontal layer analyzed here, Stern [17] has shown that 
the width of salt fingers with maximum growth rate is 
scaled by 5, but with the vertical temperature gradient 
replacing the salinity gradient. Walton [3] has shown 
that, in an unbounded fluid with constant properties 
and gradients, the horizontal and vertical wavelengths 
must be scaled by 5. The initial layer thickness in the 
sidewall heating experiments by Tanny and Tsinober 
[18] was also found to scale with 5. This diversity 
implies the universality of this scale in double diffusive 
phenomena. 

The analysis by Zangrando and Bertram [4] was 
carried out under different conditions from the present 
ones: the fluid properties were constant while the 
quasi-steady concentration profile was a cubic with 
;. Nevertheless Zangrando and Bertram [4] obtained 
exactly the same relations for the variation of a with 
Ra, in the oscillatory mode, namely powers of l/4 and 
- 1’2 for the high and low wavenumber branches, 
respectively, and a bifurcation point at Ra, N 10“ (see 
their Fig. 8a). Thus it is likely that, for these two 
cases (ours and Zangrando and Bertram’s [4]), the 
characteristic wavelength of oscillatory instability is 
insensitive to the detailed shape of the concentration 
profile and to the variability of the fluid properties. 
One may further conjecture that, in a double diffusive 
horizontal layer with any kind of a smooth non-linear 
concentration profile, the wavenumber of the oscil- 
latory mode would be similar to that shown in Fig. 5. 
This conjecture is not fully supported by Walton’s [3] 
result for a variable salinity gradient, a cc Ru~!'~ ; the 
deviation of the presently calculated power (0.25) 
from the one calculated by Walton can be explained by 
the difference between the numerical and asymptotic 
solution methods. 

The ratio 1 shown in Figs. 2 and 4 indicates that, 
for both direct and oscillatory mode, the fluid layer 
with variable properties and a variable salinity gradi- 
ent would be more unstable than that with constant 
properties and gradients. This result can be explained 
by the existence of a region at the bottom of the layer 
with a salinity gradient which is smaller than the linear 
one (see the basic state salinity profile in Fig. I). In 
this region the layer can become locally unstable at a 

temperature gradient which is smaller than the one 
required to destabilize a layer with a linear salinity 
profile. Hence, the critical value of RuT is reduced 
from that in the case of constant properties and gradi- 
ents. The reduced Rut can also be explained by the 
fact that the viscosity within the layer decreases with 
temperature. Since the viscosity is a stabilizing factor. 
a region with smaller viscosity would become locally 
unstable at a smaller temperature gradient (i.e. a 
smaller Ruf ) 

The above physical arguments imply that, when the 
fluid is heated and salted from below, the unstable 
motion would be most intense in the lower part of 
the layer, where both the viscosity and the salinity 
gradient are smaller. This phenomenon is illustrated 
in Fig. 6, which shows the vertical distribution of the 
normalized amplitude of the stream function per- 
turbation (i.e. IJ;(z)], see Section 4) within the layer. 
This parameter is directly related to the vertical com- 
ponent of the velocity perturbation at the instability 
onset. The corresponding amplitudes of the tem- 
perature and concentration perturbations have basi- 
cally the same shape as that of the stream function 
and therefore are not shown here. 

It is seen in Fig. 6(a) that, for Ra, = 10’ (for which 
a = 0.69), the flow essentially occupies the whole layer 
depth, as in the case with constant properties and 
gradients. However, Fig. 6(b) shows that, for 
Ra, = 10’ (and a = 2.1), which is larger than the bifur- 
cation point (Rus z 4000), the perturbation becomes 
localized vertically, with its maximum amplitude at 
the lower region of the layer. With a further increase 
in Ru, the region with intense motion becomes thin- 
ner, as shown in Fig. 6(c) for Ras = lo6 and a = 3.9. 

These observations suggest that, up to the bifur- 
cation point, the variable properties and the non- 
linear concentration profile have almost no effect on 
the structure of the flow, although they considerably 
reduce the critical Ru,, as was shown in Fig. 4. 
However, for Rus > 4000 (beyond the bifurcation 
point), the structure of the flow is essentially changed. 
and the perturbations become localized in the vertical 
direction. It should be emphasized that the vertical 
localization observed in Fig. 6 is associated with the 



1690 J. TANNY and V. A. GOTLIB 

increase of u or the decrease of the critical horizontal 
wavelength, a phenomenon which was also observed 
by Zangrando and Bertram [4]. 

The bifurcation phenomenon observed in Figs. 4 
and 5 is of particular interest if one considers realiz- 
ing this stability problem in the laboratory. For 
Ras < 4000 one would expect a single flow pattern at 
the onset of instability. Beyond the bifurcation point, 
for Ra, > 4000, two different flow patterns are 
possible, depending on the actual rate of increase of 
Ra, (or the applied AT). In this range, for a fixed 
Ra,, if Ra, is increased ‘slowly’, one would expect 
instability at the low-q branch (Fig. 4) with a relatively 
high wavenumber a (Fig. 5). However, if in the exper- 
iment AT is increased very ‘fast’, such that the high-p! 
branch is immediately reached, the flow pattern at 
the instability onset will presumably follow the low-u 
branch in Fig. 5. 

Another important stability parameter is the switch 
from the direct to the oscillatory mode on the plane 
Ra,-Ra,. For constant properties and for the values 
of Pr and 7 used here, this point is at Rat 2 0.07 (here 
the superscript ‘w’ denotes the switching point), while 
for variable properties our calculations indicate 
Ra; 2: 11. This suggests that, within the range 
0.07 < Ra, < 11, the direct mode can become critical 
in a stratification, which-on the basis of the constant 
properties theory-is favorable to oscillatory insta- 
bility. Such small values of Rus are not of practical 
interest, but some further calculations revealed that 
the values of Ras, over which such a phenomenon 
exists, depend strongly on 7. For example, for 7 * 0.4 
(and the same Pr = 7.2), the value of Rar for constant 
properties is nearly 180, while in the variable proper- 
ties case Ra: > 104, a practically achievable value. 
The latter result was obtained by increasing ks,, and 
leaving all other properties unchanged. Although we 
are presently not aware of a realistic double diffusive 
system with such a set of properties, it is important to 
recognize that with variable properties and a non- 
linear salinity gradient, switching from oscillatory to 
direct instability can occur at Ra, >> 1. 

The frequency of unstable oscillations is shown in 
Fig. 7. For the most unstable branch and high a the 
frequency increases as Rai-“, which is similar to the 
variation found in ref. [4]. It is also noteworthy that 
on this branch the calculated frequency is very close 
to the one predicted by the theory for constant fluid 
properties and gradients, where p, SC R@ [19]. Thus 
variable properties and gradients have a very small 
effect on the frequency of the critical oscillations. For 
the more stable branch with lower a, our results for 
Ru, > IO4 give pl = const. Zangrando and Bertram 
[4] also reported a constant frequency on that branch. 

6. CONCLUSIONS 

In this work we have analyzed the linear stability 
of a horizontal double diffusive layer in which the 
kinematic viscosity and the coefficient of salt diffu- 
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Fig. 7. The frequencyp, at the onset of oscillatory instability 
as a function of Ra,. The symbols of the different branches 
correspond to those in Fig. 4. The dashed line indicates the 

case of constant properties and gradients. 

sivity are temperature dependent, and consequently 
the steady basic state salinity distribution is non- 
linear. The main conclusions of the stability analysis 
are : 

Variable fluid properties and a non-linear salinity 
gradient reduce the critical Ra, with respect to its 
constant properties and gradients value. and vary 
the wavenumber at the onset of instability. 
The stability parameters of the direct mode are 
characterized by a single critical curve, while for 
the oscillatory mode bifurcation to two separate 
branches appears (in the investigated case it occurs 
at Ra, _v 4000). 
For both direct and oscillatory mode, the horizontal 
non-dimensional wavenumber a at the instability 
onset increases with Ru, in contrast to the case of 
constant properties and gradients where u = const. 
Hence, the horizontal wavelength depends not only 
on the layer depth but also on the concentration 
difference across the layer and on the fluid proper- 
ties. For the oscillatory mode the increase of rr is 
associated with vertical localization of the flow. 

??The variations of the critical wavenumbers and fre- 
quencies with Ru, on the two branches of the oscil- 
latory mode are similar to those found by Zan- 
grand0 and Bertram [4] for a different basic state 
salinity profile and for constant properties. This 
implies that the variable properties affect these 
stability characteristics mainly through the non- 
linearity of the basic state profile. 
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APPENDIX : VALIDATION OF THE NUMERICAL 
PROCEDURE 

Our numerical procedure was validated by analyzing the 
purely thermal Benard problem with a temperature-depen- 
dent viscosity. The comparison was made with the results of 
Stengel rt al. [8] for the case of free-free boundary 
conditions. Following their analysis we have examined a 
Palm-Jenssen fluid, the viscosity of which depends on tem- 
perature as 

I’ = r,(l-;cosn(l-0,)) 

where (I, = H,(z) is the dimensionless basic state linear tem- 
perature profile, [ is some constant coefficient and v, = Y at 
Oh = 112. 

The results of this comparison are shown in Figs, Al and 
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Fig. Al. The ratio 1 as a function of the viscosity ratio 
In(v,,,/v,,,) for Benard convection with a temperature 
dependent viscosity. Present calculations (M = 50) : (0) ; 

results of Stengel et al. (1982) : (0) 
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Fig. A2. The wavenumber a at the onset of instability as a 
function of the viscosity ratio In (v,,,/v,,,) for Benard con- 
vection with a temperature-dependent viscosity. Present cal- 
culations : (A) M = 3 ; (0) M = 13 ; (0) M = 50. Results ot 

Stengel ct al. (1982) : (0). 

A2, and one can see the very good agreement between our 
calculations and those by Stengel et al. [8]. The horizontal 
axis is logarithmically scaled by In (v,,,/v,,,), the ratio 
between the maximum and minimum viscosity over the layer, 
and the vertical axis of Fig. Al represents q, which was 
defined before (e.g. Fig. 2). It is noticed that, using a direct 
method of differential equations integration, Stengel ct al. 
[8] could not obtain sufficiently accurate values of the critical 
wavenumber, while the precision available by our present 
method is considerably larger. An accuracy like IO- ’ is fully 
achievable for reasonable computer time. 

The curves of the wavenumber at instability onset (Fig. 
A2) show that, for increasing values of the viscosity ratio. 
convergence is attained using a larger number of terms in the 
Galerkin expansion. In our problem the ratio In(v,,;,,, 
Y,,,) Y 1 so that apparently three terms are sufficient for 
convergence. It turned out however that in the double diffus- 
ive problem, more terms are needed for convergence at large 
Ra, and therefore most of our calculations were performed 
with 6-15 terms. 


